Discussion of "EXIM's Exit: The Real Effects of Trade Financing by Export Credit Agencies"

By Kabir, Matray, Müller, and Xu

Joao Monteiro FIFF

Adam Smith Workshop April 19, 2024

Industrial policy has become relevant again

Financial Times, 01/30/2023

- Use of industrial policy has increased 46% of all government policies in 2019.
 - Policies that target transformation of economic activity
 - Goals: boost GDP, exports, investment, growth, ...

Industrial policy has become relevant again

Financial Times, 01/30/2023

- Use of industrial policy has increased 46% of all government policies in 2019.
 - Policies that target transformation of economic activity
 - Goals: boost GDP, exports, investment, growth, ...
- Economists tend to be more skeptical:
 - Better than tariffs.
 - 2. But gains from IP are small.
 - 3. Also, implementation is likely to be problematic.

Harrison and Rodríguez-Clare (2010)

Bartelme et al. (2021)

Industrial policy has become relevant again

Financial Times, 01/30/2023

- Use of industrial policy has increased 46% of all government policies in 2019.
 - Policies that target transformation of economic activity
 - Goals: boost GDP, exports, investment, growth, ...
- Economists tend to be more skeptical:
 - Better than tariffs.

2. But gains from IP are small.

- 3. Also, implementation is likely to be problematic.
- Should we conduct industrial policy?
 - Geopolitics, industrial strategy, political economy, ...

Goal vs. implementation.

Harrison and Rodríguez-Clare (2010)

Bartelme et al. (2021)

Mueller (2023)

Focus on trade financing.

- US: state-backed trade financing represents \$212 billion in 2000–2019.
 - Mostly loans and loan guarantees to importers of US goods.
- Usual criticisms of industrial policy apply!
- One extra criticism most aid is directed at developed countries.
- One additional problem: transfer of funds from US taxpayers to foreigners.

Focus on trade financing.

- US: state-backed trade financing represents \$212 billion in 2000–2019.
 - Mostly loans and loan guarantees to importers of US goods.
- Usual criticisms of industrial policy apply!
- One extra criticism most aid is directed at developed countries.
- One additional problem: transfer of funds from US taxpayers to foreigners.

Important to distinguish between two types of criticism:

1. Allocation across countries.

Benmelech and Monteiro (2023)

Focus on trade financing.

- US: state-backed trade financing represents \$212 billion in 2000–2019.
 - Mostly loans and loan guarantees to importers of US goods.
- Usual criticisms of industrial policy apply!
- One extra criticism most aid is directed at developed countries.
- One additional problem: transfer of funds from US taxpayers to foreigners.

Important to distinguish between two types of criticism:

1. Allocation across countries.

Benmelech and Monteiro (2023)

2. Allocation across firms.

Focus on trade financing.

- US: state-backed trade financing represents \$212 billion in 2000–2019.
 - Mostly loans and loan guarantees to importers of US goods.
- Usual criticisms of industrial policy apply!
- One extra criticism most aid is directed at developed countries.
- One additional problem: transfer of funds from US taxpayers to foreigners.

Important to distinguish between two types of criticism:

1. Allocation across countries.

Benmelech and Monteiro (2023)

2. Allocation across firms.

This paper: Does government trade financing matter?

Shock: EXIM quorum lapse between 2015 and 2019.

- EXIM provides aid to exporters with an annual exposure cap.
- Most aid is in the form of loan guarantees to foreign importers.
- EXIM board must have at least 3 members to approve large transactions.
- Republican opposition led to a lack of quorum.

Shock: EXIM quorum lapse between 2015 and 2019.

- EXIM provides aid to exporters with an annual exposure cap.
- Most aid is in the form of loan guarantees to foreign importers.
- EXIM board must have at least 3 members to approve large transactions.
- Republican opposition led to a lack of quorum.

Data: US firms.

- Matched Compustat with EXIM transaction data.
- Data on exports.

Identification: compare firms that received aid vs. those that did not.

- Matching + DiD.
- Using only US firms in Compustat.
- Partially controlling for destination-level confounders.
- Use global sales as an outcome variable.

Identification: compare firms that received aid vs. those that did not.

- Matching + DiD.
- Using only US firms in Compustat.
- Partially controlling for destination-level confounders.
- Use global sales as an outcome variable.

Key questions:

- 1. Does the removal of EXIM aid have an effect on US firms?
- 2. Which firms are most affected?
- 3. Was EXIM picking the "right" firms?

Result 1 - global sales decrease

- Average effect = 18%.

Result 2 - results driven by financially constrained exporters

Dependent variable	Global sales				
Financing frictions proxy:		Leverage	Dividends	Hoberg and Maskimovic (2015)	
	(1)	(2)	(3)	(4)	
EXIM×Post	-0.18*** (0.037)				
$EXIM{\times}Post{\times}Constrained$	` '	-0.16**	-0.21**	-0.25***	
		(0.077)	(0.087)	(0.081)	
Fixed Effects (not interacted)					
Firm	✓	_	_	_	
Destinations×Year	\checkmark	_	_	_	
Industry×Year	✓	_	_	_	
$Treated \times Year$	_	✓	✓	✓	
Fixed Effects (interacted)					
Firm	_	✓	✓	✓	
Destinations×Year	_	✓	✓	✓	
$Industry \times Year$	_	✓	✓	✓	
Observations	26,732	25,592	25,297	25,438	

Result 3 - EXIM was picking the right firms

Dependent variable	Capital			
Sample	Low	High	All	
	(1)	(2)	(3)	
EXIM×Post	-0.044	-0.25***		
	(0.055)	(0.061)		
$Treated \times Post \times MRPK$			-0.21***	
			(0.087)	
Fixed Effects (interacted)				
Firm	\checkmark	\checkmark	\checkmark	
Industry×Year	\checkmark	✓	\checkmark	
Destinations×Year	\checkmark	\checkmark	\checkmark	
Treated×Year	_	_	\checkmark	
Observations	13,782	13,691	27,473	

- Sales decrease by more for firms with high MRPK.

$$\frac{\Delta \mathsf{Sales}}{\mathsf{Sales}} = \frac{\Delta \mathsf{Sales}_{\mathsf{not} \; \mathsf{exim}}}{\mathsf{Sales}} + \frac{\Delta \mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

$$\frac{\Delta \mathsf{Sales}}{\mathsf{Sales}} = \frac{\Delta \mathsf{Sales}_{\mathsf{not}\,\mathsf{exim}}}{\mathsf{Sales}} + \frac{\Delta \mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

$$\frac{\Delta \mathsf{Sales}}{\mathsf{Sales}} = \frac{\Delta \mathsf{Sales}_{\mathsf{not}\,\mathsf{exim}}}{\mathsf{Sales}} + \frac{\Delta \mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

$$\frac{\Delta \mathsf{Sales}}{\mathsf{Sales}} = \frac{\Delta \mathsf{Sales}_{\mathsf{not}\,\mathsf{exim}}}{\mathsf{Sales}} + \frac{\Delta \mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

ATT:
$$(\theta - 1) \times \frac{\mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

- Worst case scenario: heta=0 and all sales backed by EXIM disappear.
- Best case scenario: $\theta = 1$ and ATT = 0.

$$\frac{\Delta \mathsf{Sales}}{\mathsf{Sales}} = \frac{\Delta \mathsf{Sales}_{\mathsf{not}\,\mathsf{exim}}}{\mathsf{Sales}} + \frac{\Delta \mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

Counterfactual:
$$\frac{\Delta Sales_{not\ exim}}{Sales} = \underbrace{g^{counterfactual}}_{control\ group} + \theta \frac{Sales_{exim}}{Sales}, \theta \in [0, 1]$$

ATT:
$$(\theta - 1) \times \frac{\mathsf{Sales}_{\mathsf{exim}}}{\mathsf{Sales}}$$

- Worst case scenario: $\theta = 0$ and all sales backed by EXIM disappear.
- Best case scenario: $\theta = 1$ and ATT = 0.
- Let's compute $\frac{Sales_{exim}}{Sales}$.

Average share of EXIM in total aid is around 5%

- Match around 60% of total aid before shock.
- Aid covers 85% of exports \implies share = 4.5/0.85 = 5.3%.

Complementarity

Effect on sales is much larger than the share of EXIM aid.

- Firms have increasing returns to scale?
- Internal capital markets?
- Other sources of complementarity?

Complementarity

Effect on sales is much larger than the share of EXIM aid.

- Firms have increasing returns to scale?
- Internal capital markets?
- Other sources of complementarity?

Using structure, results predict that complementarities account for at least 2/3 of result.

- Maximum drop in sales generated by EXIM under separability is 5%.

Control group

If we narrow in on largest recipient of aid (Boeing):

Benmelech and Monteiro (2023)

- Use Airbus as control group.
- Sales decrease by 4% relative to 10% share $\implies \theta = 0.6$.
- Sales backed by EXIM do not disappear.

Control group

If we narrow in on largest recipient of aid (Boeing):

Benmelech and Monteiro (2023)

- Use Airbus as control group.
- Sales decrease by 4% relative to 10% share $\implies \theta = 0.6$.
- Sales backed by EXIM do not disappear.

What can be driving this?

- Potential selection bias: who wants EXIM aid?
- Matching on foreign firms rather than US firms.

Result: financially constrained exporters more affected by shock.

Result: financially constrained exporters more affected by shock.

- 86% of aid are loan guarantees to **importers**.
- From perspective of importer, this is a negative demand shock.
- Assumption of regression is that shock is identical to all treated firms.
- Model in paper is about EXIM lowering cost of capital.

$$\mathsf{MRPK} = \underbrace{\omega}_{\mathsf{wedge} \geq 1} \times (1 + r)$$

- Simple model with a collateral constraint.
- Can be generalizable.
- Wedge is larger for financially constrained firms.
- Introduces permanent differences in MRPK.

How do demand shocks interact with financial frictions?

$$\mathsf{MRPK} = \omega \times (1+r)$$

End of EXIM aid is a negative demand shock.

How do demand shocks interact with financial frictions?

$$\mathsf{MRPK} = \omega \times (1+r)$$

End of EXIM aid is a negative demand shock.

Unconstrained firm: $\omega = 1$ and $\Delta \omega = 0$

- End of EXIM aid \implies MRPK $\downarrow \implies$ K $\downarrow \implies$ Sales \downarrow .

How do demand shocks interact with financial frictions?

$$\mathsf{MRPK} = \omega \times (1+r)$$

End of EXIM aid is a negative demand shock.

Unconstrained firm: $\omega = 1$ and $\Delta \omega = 0$

- End of EXIM aid \implies MRPK $\downarrow \implies$ Sales \downarrow .

Constrained firm: $\omega > 1$.

- End of EXIM is negative demand shock \implies cash on hand $\downarrow \implies \omega \uparrow$.
- End of EXIM aid \Longrightarrow MRPK \downarrow , $\omega \uparrow \Longrightarrow K \downarrow \downarrow \Longrightarrow$ Sales $\downarrow \downarrow$.
- Financially constrained firms should experience sharper drop in sales.

How do demand shocks interact with financial frictions?

$$\mathsf{MRPK} = \omega \times (\mathbf{1} + r)$$

End of EXIM aid is a negative demand shock.

Unconstrained firm: $\omega = 1$ and $\Delta \omega = 0$

- End of EXIM aid \implies MRPK $\downarrow \implies$ Sales \downarrow .

Constrained firm: $\omega > 1$.

- End of EXIM is negative demand shock \implies cash on hand $\downarrow \implies \omega \uparrow$.
- End of EXIM aid \Longrightarrow MRPK \downarrow , $\omega \uparrow \Longrightarrow K \downarrow \downarrow \Longrightarrow$ Sales $\downarrow \downarrow$.
- Financially constrained firms should experience sharper drop in sales.
- In line with empirical results!

Result: drop in sales sharper for firms with higher MPRK.

Result: drop in sales sharper for firms with higher MPRK.

- Authors argue this is evidence EXIM did not increase misallocation.
- Crucial result for policy discussion.

Result: drop in sales sharper for firms with higher MPRK.

- Authors argue this is evidence EXIM did not increase misallocation.
- Crucial result for policy discussion.

However, MPRK can be driven by financial frictions.

- Assume financial frictions on capital.

Result: drop in sales sharper for firms with higher MPRK.

- Authors argue this is evidence EXIM did not increase misallocation.
- Crucial result for policy discussion.

However, MPRK can be driven by financial frictions.

- Assume financial frictions on capital.
- Unconstrained firms set MRPK = (1 + r).
- For constrained firms, MRPK > (1 + r) as capital is too low.

Result: drop in sales sharper for firms with higher MPRK.

- Authors argue this is evidence EXIM did not increase misallocation.
- Crucial result for policy discussion.

However, MPRK can be driven by financial frictions.

- Assume financial frictions on capital.
- Unconstrained firms set MRPK = (1 + r).
- For constrained firms, MRPK > (1 + r) as capital is too low.
- Then, high MRPK firms = financially constrained firms!
- Result 3 = Result 2.

Result: drop in sales sharper for firms with higher MPRK.

- Authors argue this is evidence EXIM did not increase misallocation.
- Crucial result for policy discussion.

However, MPRK can be driven by financial frictions.

- Assume financial frictions on capital.
- Unconstrained firms set MRPK = (1 + r).
- For constrained firms, MRPK > (1 + r) as capital is too low.
- Then, high MRPK firms = financially constrained firms!
- Result 3 = Result 2.
- Two-way split MPRK and financial frictions.
- Maybe use TFP?

Other sources of misallocation

Misallocation across importers: within firm.

- Most of EXIM aid is directed at developed countries.
- Elasticity of demand wrt EXIM aid is likely to be low.
- For Boeing, we find Elasticity \approx 0.
- Efficiency gains if we move aid away from developed countries.

Other sources of misallocation

Misallocation across importers: within firm.

- Most of EXIM aid is directed at developed countries.
- Elasticity of demand wrt EXIM aid is likely to be low.
- For Boeing, we find Elasticity \approx 0.
- Efficiency gains if we move aid away from developed countries.

Misallocation across sectors

- Maybe within sector EXIM gets it right.
- What about aid across sectors?

Aid across sectors

$$\log ext{Aid amount}_{ ext{\it sdt}} = \lambda_{ ext{\it dt}} + lpha_{ ext{\it s}} + \gamma imes \log ext{Output}_{ ext{\it st}} + arepsilon_{ ext{\it sdt}}$$

Aid across sectors

$$\log \text{Aid amount}_{sdt} = \lambda_{dt} + \alpha_s + \gamma \times \log \text{Output}_{st} + \varepsilon_{sdt}$$

- EXIM was supporting underperforming sectors.
- Shifts after 2015 shock.

Conclusion

I really like this paper!

Conclusion

I really like this paper!

- Topic is hot in policy circles. Time for economists to weigh in!
- Discussion of effectiveness and importance of industrial policy is very important.
- I find the misallocation avenue very promising.
 - This is what policymakers need!
 - However, not enough to compare firms within sectors.