Discussion of "Financing the Global Shift to Electric Mobility" By Bena, Bian, and Tang

Joao Monteiro EIEF

FIRS 2024 May 29, 2024

How do we finance the green transition?

- Green technologies tend to face higher cost of credit.

Lanteri and Rampini (2023)

- Most studies take demand as passive.
- Credit moves demand only through firm's marginal costs.
- However, we know credit is crucial for consumption of durables.
 - Durables: houses, cars, etc...
 - If credit is also costlier for green durables, effect is amplified.
 - Firm invest less in green tech and consumers buy less.
- Then, need to understand "green" spreads in durables.

spread $\equiv i_{EV} - i_{ICE}$

spread
$$\equiv i_{EV} - i_{ICE}$$

- 1. Technological risk: at some time T, ICE becomes obsolete.
 - Lenders know this and resale/recovery price is lower.
 - spread ↓.

spread
$$\equiv i_{EV} - i_{ICE}$$

- 1. Technological risk: at some time T, ICE becomes obsolete.
 - Lenders know this and resale/recovery price is lower.
 - spread ↓.
- 2. Vintage risk:
 - EV is a new technology and new vintages render previous ones obsolete.
 - Lenders view this as a reduction in expected recovery.
 - spread ↑.

spread
$$\equiv i_{EV} - i_{ICE}$$

- 1. Technological risk: at some time *T*, ICE becomes obsolete.
 - Lenders know this and resale/recovery price is lower.
 - spread ↓.
- 2. Vintage risk:
 - EV is a new technology and new vintages render previous ones obsolete.
 - Lenders view this as a reduction in expected recovery.
 - spread ↑.
- 3. Depreciation risk:
 - EV components depreciate faster (e.g. batteries).
 - spread ↑.

spread
$$\equiv i_{EV} - i_{ICE}$$

- 1. Technological risk: at some time *T*, ICE becomes obsolete.
 - Lenders know this and resale/recovery price is lower.
 - spread ↓.
- 2. Vintage risk:
 - EV is a new technology and new vintages render previous ones obsolete.
 - Lenders view this as a reduction in expected recovery.
 - spread ↑.
- 3. Depreciation risk:
 - EV components depreciate faster (e.g. batteries).
 - spread ↑.

This paper: what is the spread and what drives it?

Data

Car data: standardized loan-level data for car loans.

- Observe loan amount, interest rate, maturity, and LTV.
- Observe make and manufacturer, and borrower characteristics.
- Matched with residual value data.

Patent data: all US patents.

- Used to compute intensity of innovation.
- Focus on patents on clean auto technology.
- Yields a time series of clean energy intensity.

Empirical strategy

$$Y_{it} = \alpha_{\mathsf{make-model}} + \alpha_{\mathsf{region},t} + \alpha_{\mathsf{lender}} + \alpha_{\mathsf{deal}} + \beta \mathsf{Hybrid}_i + \delta X_{it} + \varepsilon_{it}$$

- Use cross-sectional variation within a maker-model.
- Fully absorb lender and region variation.
- Also include interaction of Hybrid with patent intensity.

Result 1: EV are charged a higher interest rate

	(1) interest rate	(2)LTV	(3) maturity
Hybrid	0.239*** (0.06)	-4.616*** (1.02)	-2.223*** (0.46)
deal FE make-model × nuts3 × lender × year FE borrower controls	Y	Y	Y
	Y	Y	Y
	V	V	V
Observations	7,471,046	7,028,766	7,471,057
R-sq	0.783	0.430	0.443

- LTV is lower \implies larger downpayment.
- Maturity is lower \implies monthly payment is larger.

Result 2: lender's estimation of residual value is lower for EVs

	(1) RV/price	(2) RV adjustment ever	(3) RV adi, down ever	(4) RV adj. down never
Hybrid	-0.048*** (0.006)		0.023*** (0.005)	0.002 (0.002)
lender FE	Y	Y	Y	Y
deal FE	Y	Y	Y	Y
model-make FE	Y	Y	Y	Y
$nuts3 \times year FE$	Y	Y	Y	Y
borrower controls	Y	Y	Y	Y
loan controls	Y	Y	Y	Y
mean outcome var.	0.403	0.125	0.114	0.011
Observations	1,261,987	1,370,360	1,370,360	1,370,360
R-sq	0.357	0.293	0.284	0.070

- Revisions of residual value are also more common.
- But only for downwards revisions.

Result 3: variation in interest rates comes from intensity of clean patenting

	interest rate			
	(1)	(2)	(3)	(4)
Hybrid	0.101 (0.10)	0.038 (0.10)	0.039 (0.08)	0.002 (0.10)
Hybrid \times number of clean patents ADHMV2016 (log)	0.162*** (0.03)	0.134*** (0.03)		
Hybrid × share of clean patents ADHMV2016			0.169*** (0.02)	0.136*** (0.02)
baseline FE, borrower & loan controls	Y	Y	Y	Y
Hybrid \times incentive controls	N	Y	N	Y
Hybrid × socioeconomic controls	N	Y	N	Y
$Hybrid \times competition controls$	N	Y	N	Y
Observations	2,816,501	2,816,501	2,816,501	2,816,501
R-sq	0.805	0.805	0.805	0.805

- Hybrid dummy is no longer significant.
- Number of clean patents varies across t.

Identification

$$Y_{it} = \alpha_{\text{region,make-model,lender},t} + \alpha_{\text{deal}} + \beta \text{Hybrid}_i + \delta X_{it} + \varepsilon_{it}$$

- FE implies they compare Porsche Cayenne with Porsche Cayenne hybrid.
 - Not Porsche 911 with Toyota Prius.
- Consumers should be very similar.
- 1. Are hybrids the same as EVs?
 - Most hybrids are built for tax reasons.
 - Is the collateral channel weaker?

How do car loans work in Europe?

Most common contract is a PCP or financial lease.

- Buyer pays a deposit.
- Terminal value: big chunk of loan paid at end \implies deferred loan + lease.
- Monthly payment depends on principal of loan minus terminal value.
- Repayment of loan can be in cash or by returning the car.

Lender bears all the recovery risk.

- If P > TV, buyer pays in cash \implies lender has a short call option.
- If P < TV, buyer returns car \implies lender has a short put option.
- Lender really dislikes volatility.

Aside: is the financing for EVs identical to financing of other cars?

What can the lender do?

- 1. Reduce principal of loan \implies decrease LTV.
- 2. Increase monthly payments \implies increase interest rate.
- 3. Reduce volatility \implies decrease T.

However, the borrower needs to accept.

- If borrower is financially constrained, crucial to keep monthly payments down.
- If not, present value of payments matter.

What are the payoffs to the borrower?

$$-\sum_{t=1}^{T} \frac{M}{(1+i)^{T}} + \frac{1}{(1+i)^{T-1}} \left(\underbrace{\max\{P_{T+1}^{\text{resale}} - T\overline{V}, 0\}}_{\text{long call}} + \underbrace{\max\{T\overline{V} - P_{T+1}^{\text{resale}}, 0\}}_{\text{long put}} \right)$$

and if we ignore the option value (financially constrained borrowers),

$$M = \underbrace{\mathsf{LTV} \times P}_{\mathsf{loan \, value}} \times \frac{i(1+i)^T}{(1+i)^T - 1}$$

and so I can use the empirical estimates to predict the effect on M.

Monthly payments seem to vary little

- Price of EVs is also declining \implies Euro amount of downpayment \downarrow .
- Results are consistent with a desire to make monthly payments stable.

Depreciation or collateral value?

Result: credit is more expensive for EV & driven by lower resale price.

- But it could be driven by a faster physical depreciation of EV.
- For example, old batteries depreciated fast.
- In turn, fast depreciation creates incentives for more innovation.

One possible way to check this is to use data on component warranties.

- For each car, look at warranties.
- Compute average warranty length.
- Sort cars according to this variable.

Price of used EVs have been declining

- Vintage risk or quantity effect?

How is the spread moving over time?

Measure of patent intensity is not vehicle-specific.

- Captures only time-series variation.
- Is it the patenting activity or the fluctuations in price of used cars?
- Both could capture the same thing low recovery price.
- But quantity of used cars is also moving.

My suggestion: allow the Hybrid coefficient to vary over time.

- Then, compare with time series of prices.

Conclusion

This is a great paper!

- Focus should be on how the financing of consumption also matters!
 - This goes beyond green vs. brown technologies.
- EVs are a great example large vintage risk.
- Data + empirics are amazing!
- I would change very little.