Discussion of "Inflation and Floating-Rate Loans: Evidence from the Euro-Area"

By Core, De Marco, Eisert, and Schepens

Joao Monteiro FIFF

Monetary Policy and Heterogeneity in Households, Firms, and Financial Intermediaries: Insights from Microdata October 14, 2025

Motivation

- Transmission of monetary policy is state-dependent.
 - Plenty of evidence on the household side.
 - Less so on the firm side: price puzzle, working capital, covenants, leverage.
 - In particular, how does the composition of debt matter?

Motivation

- Transmission of monetary policy is state-dependent.
 - Plenty of evidence on the household side.
 - Less so on the firm side: price puzzle, working capital, covenants, leverage.
 - In particular, how does the composition of debt matter?
- Consider an interest rate hike. What happens to firms' marginal costs?

Motivation

- Transmission of monetary policy is state-dependent.
 - Plenty of evidence on the household side.
 - Less so on the firm side: price puzzle, working capital, covenants, leverage.
 - In particular, how does the composition of debt matter?
- Consider an interest rate hike. What happens to firms' marginal costs?
 - Funding costs $\uparrow \Longrightarrow$ marginal costs \uparrow .
 - What if firms have fixed rate debt?
 - What are the implications for price dispersion?
 - What are the implications for the agg. price level?

The Paper

Data:

- AnaCredit: all loans to firms.
- Sector-level prices + product-level prices.

$$\Delta \mathsf{CPI}_{i,c,t} = \beta \mathsf{Share} \; \mathsf{Float}_{i,c} \times \Delta \mathsf{DFR}_t + \alpha' X_{i,c,t} + \delta_{i,c} + \eta_{i,t} + \gamma_{c,t} + \varepsilon_{i,c,t}$$

with a similar regression for prices.

Result 1 - Inflation higher in sectors with variable rates

	Inflation rate (%)						
	(1)	(2)	(3)	(4)	(5)		
Δ DFR	-0.338*** (0.0916)	-0.645*** (0.194)					
ShareFloat $_{ic} imes \Delta$ DFR	(0.0916)	0.0052* (0.0029)	0.0108*** (0.0031)	0.0099***			
High Share $_{ic} \times \Delta$ DFR		(0.002)	(0.0001)	(0.0002)	0.347**		
Energy cost				0.0414 (0.0466)	(0.165) 0.0392 (0.0476)		
Observations	13,944	13,944	13,920	11,544	11,544		
R-squared	0.565	0.566	0.821	0.837	0.836		
Macro controls	Y	Y	-	-	-		
Country-industry FE	Y	Y	Y	Y	Y		
Ind-month FE	N	N	Y	Y	Y		
Country-month FE	N	N	Y	Y	Y		

Result 2 - Results stronger in sectors with high working capital needs

	Workin	g Capital	HHI		
	Low	High	Low	High	
	(1)	(2)	(3)	(4)	
ShareFloat _{ic}	0.0059	0.0167***	-0.0027	0.0164***	
$\times \Delta$ DFR	(0.0049)	(0.0043)	(0.0044)	(0.0045)	
Observations	5,784	5,328	5,634	5,670	
R-squared	0.831	0.897	0.893	0.812	
Country-Ind FE	Y	Y	Y	Y	
Ind-month FE	Y	Y	Y	Y	
Country-month FE	Y	Y	Y	Y	

Result 3 - Higher increase in interest rates

	Interest rate (%)				
	(1)	(2)	(3)	(4)	
Δ DFR	0.0937***				
	(0.0061)				
ShareFloat _{fb} \times Δ DFR	0.609***	0.609***	0.539***	0.576***	
,-	(0.0092)	(0.0097)	(0.0079)	(0.0082)	
Observations	110,253,844	110,253,844	110,252,694	110,238,610	
Bank-Firm FE	Y	Y	Y	Y	
Month FE	N	Y	-	-	
Country-industry-month FE	N	N	Y	Y	
Bank-month FE	N	N	N	Y	

- Pass-through elasticity is around 0.5.

Why do prices change?

Cost channel: interest rates affect current marginal costs.

Barth & Ramey (2002)

- Doesn't seem to be the case as these loans are not about working capital.
- Average loan maturity is around 3,000 days.
- Therefore, in PE, current marginal costs don't change.

Why do prices change?

Cost channel: interest rates affect current marginal costs.

Barth & Ramey (2002)

- Doesn't seem to be the case as these loans are not about working capital.
- Average loan maturity is around 3,000 days.
- Therefore, in PE, current marginal costs don't change.

Alternative mechanism: investment.

- Higher cost of debt ⇒ lower investment.
- Lower investment \implies future marginal costs \uparrow .
- Marginal costs \uparrow in the future \implies higher prices today.

From marginal costs to prices

Need: Calvo + perfect foresight + risk-neutrality.

$$\begin{aligned} d \log P_t^{\star}(i) &= ... + \Omega(i) \times \sum_{k \geq 0} (\varepsilon d \log P_{t+k} + d \log Y_{t+k}) \\ &+ \Omega(i) \times \sum_{k \geq 0} d \log \underbrace{\mathcal{M}_{t+k}(i)}_{\text{marginal cost}} \end{aligned}$$

From marginal costs to prices

Need: Calvo + perfect foresight + risk-neutrality.

$$\begin{split} d\log P_t^{\star}(i) &= ... + \Omega(i) \times \sum_{k \geq 0} (\varepsilon d \log P_{t+k} + d \log Y_{t+k}) \\ &+ \Omega(i) \times \sum_{k \geq 0} d \log \underbrace{\mathcal{M}_{t+k}(i)}_{\text{marginal cost}} \end{split}$$

With a symmetric equilibrium, $\Omega(i) = \Omega$ and we have identification.

- Otherwise, differential exposure to the cycle introduces a bias.
- Will return to this later.

From interest rates to marginal costs

Need: predetermined capital + two types of debt.

- Capital share is α , leverage is d.
- Firm has a share γ of floating debt and share 1 $-\gamma$ of fixed debt.
- At time t, fixed rate is known to be R_{t+1} and floating rate R_{t+1}^{ν} .

Cost of capital at time t is $\gamma \mathbb{E}_t R_{t+1}^{\nu} + (1 - \gamma) R_{t+1}$.

From interest rates to marginal costs

Need: predetermined capital + two types of debt.

- Capital share is α , leverage is d.
- Firm has a share γ of floating debt and share 1 γ of fixed debt.
- At time t, fixed rate is known to be R_{t+1} and floating rate R_{t+1}^{ν} .

Cost of capital at time t is $\gamma \mathbb{E}_t R_{t+1}^{\nu} + (1 - \gamma) R_{t+1}$.

$$d \log \mathcal{M}_{t+1}(i) = ... - \alpha d \log K_{t+1}(i)$$

$$d \log K_{t+1}(i) = ... - \frac{1}{1-\alpha} \times d \times \underbrace{m_t^{v}(i)}_{\text{share of floating debt}} \times d \log R_{t+1}^{v}$$

From the model to the data

$$d \log P_t^{\star}(i) = \ldots + \Omega \times \sum_{k \geq 0} \frac{\alpha}{1 - \alpha} dm_{t+k-1}^{v}(i) d \log R_{t+k+1}^{v}$$

If we assume the shock only takes place at t + 1, we get a simpler expression

$$d \log P_t^{\star}(i) = ... + \Omega imes rac{lpha}{1-lpha} imes d imes m_t^{\mathsf{v}}(i) imes d \log R_{t+1}^{\mathsf{v}}$$

- Shock affects prices through investment.
- This is a testable implication: higher m_t^{ν} implies larger drop in investment.
- Also implies drop in credit demand.
- Consistent with the findings on leverage.

Possible confounders

$$d \log P_t^{\star}(i) = ... + \Omega(i) \times \lambda_t + \Omega(i) \times \frac{\alpha}{1 - \alpha} \times m_t^{\mathsf{v}}(i) \times d \log R_{t+1}^{\mathsf{v}}$$

- 1. Capital share: higher $\alpha \implies$ higher price change.
 - Can compare sectors based on their capital share.
- 2. Calvo parameter: lower price adjustment ($\theta \uparrow$) \implies higher price change.
 - If firms know they can only change prices infrequently, they will change more.
 - Can also be tested using sectoral prob. of price change.
- 3. Exposure to the business cycle:
 - Even if there is no shock, price behavior might be different across sectors.
 - It depends on $Cov(\Omega, m_t^{\nu})$.
 - This is why looking at firm-level data helps.

Selection into variable rates

What type of firms select into adjustable rate loans?

- Country FE only explains 29% of variation.

Selection into variable rates

What type of firms select into adjustable rate loans?

- Country FE only explains 29% of variation.

As an example, take a mean-variance firm with risk aversion σ . This firm chooses a variable share of

$$\gamma^{\star} = \underbrace{\frac{\textit{Cov}(\textit{y}, \textit{r}^{\textit{v}})}{\textit{dVar}(\textit{r}^{\textit{v}})}}_{\text{hedging}} - \underbrace{\frac{\mathbb{E}\textit{r}^{\textit{v}} - \textit{r}}{\textit{d}\sigma\textit{Var}(\textit{r}^{\textit{v}})}}_{\text{speculative}}$$

- Higher leverage *d* implies lower share of floating rate.

Vickery (2008)

- Higher comovement implies higher share of floating.
- Key to describe the differences between firms.

Why do prices increase by more in high HHI sectors?

Suppose high HHI implies firms with high markup.

Then, high-markup firms increase markups?

- With Kimball demand, expect the opposite.
- Decrease in markups is also consistent with evidence in tariff pass-through.

Why do prices increase by more in high HHI sectors?

Suppose high HHI implies firms with high markup.

Then, high-markup firms increase markups?

- With Kimball demand, expect the opposite.
- Decrease in markups is also consistent with evidence in tariff pass-through.

Or maybe high-markup firms face larger increase in marginal costs.

- Maybe through either capital share or lower reset prob.
- This is testable.
- But then it's not about markups or HHI.

Conclusion

I really like this paper!

- Plenty to like: sharp question, great execution, interesting conclusions.
- Could be a bit clearer on the mechanism.

Some concluding thoughts:

- Paper is positive, not normative.
- But they find that the composition of debt leads to price dispersion.
- Inefficient price dispersion is like a negative TFP shock.
- But is this the case if marginal costs are just changing differently?